The Problem: Traffic
In the most basic type of network found today, nodes are simply connected together using hubs. As a network grows, there are some potential problems with this configuration:- Scalability - In a hub network, limited shared bandwidth makes it difficult to accommodate significant growth without sacrificing performance. Applications today need more bandwidth than ever before. Quite often, the entire network must be redesigned periodically to accommodate growth.
- Latency - This is the amount of time that it takes a packet to get to its destination. Since each node in a hub-based network has to wait for an opportunity to transmit in order to avoid collisions, the latency can increase significantly as you add more nodes. Or, if someone is transmitting a large file across the network, then all of the other nodes have to wait for an opportunity to send their own packets. You have probably seen this before at work -- you try to access a server or the Internet and suddenly everything slows down to a crawl.
- Network failure - In a typical network, one device on a hub can cause problems for other devices attached to the hub due to incorrect speed settings (100 Mbps on a 10-Mbps hub) or excessive broadcasts. Switches can be configured to limit broadcast levels.
- Collisions - Ethernet uses a process called CSMA/CD (Carrier Sense Multiple Access with Collision Detection) to communicate across the network. Under CSMA/CD, a node will not send out a packet unless the network is clear of traffic. If two nodes send out packets at the same time, a collision occurs and the packets are lost. Then both nodes wait a random amount of time and retransmit the packets. Any part of the network where there is a possibility that packets from two or more nodes will interfere with each other is considered to be part of the same collision domain. A network with a large number of nodes on the same segment will often have a lot of collisions and therefore a large collision domain.
The Solution: Adding Switches
Think of a hub as a four-way intersection where everyone has to stop. If more than one car reaches the intersection at the same time, they have to wait for their turn to proceed.Now imagine what this would be like with a dozen or even a hundred roads intersecting at a single point. The amount of waiting and the potential for a collision increases significantly. But wouldn't it be amazing if you could take an exit ramp from any one of those roads to the road of your choosing? That is exactly what a switch does for network traffic. A switch is like a cloverleaf intersection -- each car can take an exit ramp to get to its destination without having to stop and wait for other traffic to go by.
A vital difference between a hub and a switch is that all the nodes connected to a hub share the bandwidth among themselves, while a device connected to a switch port has the full bandwidth all to itself. For example, if 10 nodes are communicating using a hub on a 10-Mbps network, then each node may only get a portion of the 10 Mbps if other nodes on the hub want to communicate as well. But with a switch, each node could possibly communicate at the full 10 Mbps. Think about our road analogy. If all of the traffic is coming to a common intersection, then each car it has to share that intersection with every other car. But a cloverleaf allows all of the traffic to continue at full speed from one road to the next.
0 comments:
Post a Comment